The Jones polynomial of almost-alternating and Turaev genus one links

Adam Lowrance - Vassar College

December 10, 2016

Construction of the Turaev surface $F(D)$

(1) Replace arcs of D not near crossings with bands transverse to the projection plane.
(2) Replace crossings of D with saddles interpolating between the all- B and all- A states of D
(3) Cap off the boundary components with disks to obtain $F(D)$.

The Turaev surface in pictures

Turaev genus

- For a diagram D of a link L, let $g_{T}(D)$ denote the genus of the Turaev surface $F(D)$.
- The Turaev genus $g_{T}(L)$ of the link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\}
$$

Some history of the Turaev surface

- Turaev (1987) related $F(D)$ to the difference between the span of the Jones polynomial and the crossing number.
- DFKLS (2006) - The Jones polynomial is an evaluation of the Bollobás-Riordan-Tutte polynomial of a graph embedded on the Turaev surface.
- CKS (2007), DL $(2007,2009,2015)$ - Connections with Khovanov homology and knot Floer homology.
- Kalfagianni (2016) - Characterization of adequate knots using the colored Jones polynomial and Turaev genus.

Classification of links of Turaev genus one

Theorem (Armond, L.; Kim)
(1) Let $R_{1}, \ldots, R_{2 k}$ be alternating two-tangles, and let D be a link diagram connecting $R_{1}, \ldots, R_{2 k}$ as depicted above. Then $g_{T}(D)=1$.
(2) Moreover, if L is a non-split link with $g_{T}(L)=1$, then L has a diagram as above.

Examples of Turaev genus one links

Some examples of Turaev genus one links are:

- non-alternating pretzel links,
- non-alternating Montesinos links,
- almost-alternating links.

Almost-alternating links

- A link diagram D is almost-alternating if one crossing change transforms D into an alternating diagram (Adams et al. 1992).
- A link L is almost-alternating if it is non-alternating and has an almost-alternating diagram.
- If L is almost-alternating, then $g_{T}(L)=1$. The converse is open.

Mutation

- Let B be a 3-ball whose boundary intersects the link L in exactly 4 -points. A mutation of L is a link obtained by removing B from S^{3}, rotating it 180° about a principle axis, and then gluing B back into S^{3}.
- Any two links related to one another via a sequence of mutations are said to be mutant to one another.

Theorem (Armond, L.)
If $g_{T}(L)=1$, then L is mutant to an almost-alternating link.

Mutation proof

Mutation proof continued

Jones polynomial results

Let $V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ be the Jones polynomial of L where a_{m} and a_{n} are nonzero.

Theorem (Dasbach, L.)
If L is almost-alternating, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Corollary
If $g_{T}(L)=1$, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Numerator and denominator

A tangle R, its numerator closure $N(R)$ and its denominator closure $D(R)$.

Adjacent faces

- Let $\operatorname{adj}\left(u_{1}, u_{2}\right)$ be the number of faces of $N(R)$ adjacent to both u_{1} and u_{2}.
- Let $\operatorname{adj}\left(v_{1}, v_{2}\right)$ be the number of faces of $D(R)$ adjacent to both v_{1} and v_{2}.

Example

$\operatorname{adj}\left(v_{1}, v_{2}\right)=0$

Non-minimal almost-alternating diagrams

Lemma

Let D be an almost-alternating diagram of a non-alternating link L. If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then L has an almost-alternating diagram with fewer crossings than D.

Proof of Lemma

If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then D has diagram as below.

v_{2}

Proof of Lemma

Resolutions of an almost-alternating diagram

If D is almost-alternating, then the resolutions of the almost-alternating crossing $N(R)$ and $D(R)$ are alternating.

Jones polynomial proof

- $\langle D\rangle=A\langle D(R)\rangle+A^{-1}\langle N(R)\rangle$.
- Both $D(R)$ and $N(R)$ are alternating diagrams.
- Dasbach and Lin (2006) describe the first few coefficients of the Kauffman bracket of an alternating link in terms of the checkerboard graph.
- The (potential) leading and trailing coefficients of $\langle D\rangle$ are $\left|\operatorname{adj}\left(u_{1}, u_{2}\right)-1\right|$ and $\left|\operatorname{adj}\left(v_{1}, v_{2}\right)-1\right|$.

The example ... again

$\operatorname{adj}\left(u_{1}, u_{2}\right)=3$

$\operatorname{adj}\left(v_{1}, v_{2}\right)=0$

If $\operatorname{adj}\left(u_{1}, u_{2}\right) \geq 3$, then $\operatorname{adj}\left(v_{1}, v_{2}\right)=0$, and $\operatorname{if} \operatorname{adj}\left(v_{1}, v_{2}\right) \geq 3$, then $\operatorname{adj}\left(u_{1}, u_{2}\right)=0$.

The leading and trailing coefficients

- We want either $\left|\operatorname{adj}\left(u_{1}, u_{2}\right)-1\right|=1$ or $\left|\operatorname{adj}\left(v_{1}, v_{2}\right)-1\right|=1$.
- Let D be an almost-alternating diagram of L with the fewest number of crossings among all almost-alternating diagrams of L.
- Lemma says at least one of $\operatorname{adj}\left(u_{1}, u_{2}\right)$ or $\operatorname{adj}\left(v_{1}, v_{2}\right)$ is not one. Say $\operatorname{adj}\left(u_{1}, u_{2}\right) \neq 1$.
- If $\operatorname{adj}\left(u_{1}, u_{2}\right)=0$ or 2 , and we are done. If $\operatorname{adj}\left(u_{1}, u_{2}\right) \geq 3$, then $\operatorname{adj}\left(v_{1}, v_{2}\right)=0$, and we are done.

An example: $12 n 375$

$$
V_{12 n 375}(t)=2 t^{2}-4 t^{3}+8 t^{4}-9 t^{5}+10 t^{6}-10 t^{7}+7 t^{8}-5 t^{9}+2 t^{10}
$$

Low crossing results

- Among all knots with 12 or fewer crossings, it is unknown whether 37 of them are almost-alternating or have Turaev genus one (according to Knot Info).
- Our work shows that 11 of these 37 knots are not almost-alternating and do not have Turaev genus one.

Minimum crossing almost-alternating diagrams

- If $\operatorname{adj}\left(u_{1}, u_{2}\right) \neq 1$ and $\operatorname{adj}\left(v_{1}, v_{2}\right) \neq 1$, then D has the fewest possible crossings among almost-alternating diagrams of L.
- If $\operatorname{adj}\left(u_{1}, u_{2}\right)=1$ and $\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then L has an almost-alternating diagram with fewer crossings.
- If only one of $\operatorname{adj}\left(u_{1}, u_{2}\right)$ or $\operatorname{adj}\left(v_{1}, v_{2}\right)$ is equal to one, then the minimum number of crossings in an almost-alternating diagram is open.

Khovanov homology generalization

Let $j_{\text {min }}$ and $j_{\text {max }}$ be the least and greatest polynomial grading where the Khovanov homology of L is non-trivial.

Theorem (Dasbach, L.)
If L is almost-alternating or Turaev genus one, then either $K h^{*, j_{\min }}(L)$ or $K h^{*, j_{\max }}(L)$ is isomorphic to \mathbb{Z}.

Note. The proof relies on the long exact sequence in Khovanov homology, and so the result holds for odd Khovanov homology as well.

Semi-adequate links

- A link diagram D is A-adequate if its all- A state graph G contains no loops. Similarly define B-adequate.
- A link is semi-adequate if it has a diagram that is either A-adequate or B-adequate.

Semi-adequate and almost-alternating

- Lickorish, Thistlethwaite (1988) - The leading or trailing coefficient of the Jones polynomial of a semi-adequate link is ± 1.
- Khovanov (2002) - One of the two extremal polynomial gradings of the Khovanov homology of a semi-adequate link is isomorphic to \mathbb{Z}.
- Open question. Are all almost-alternating or Turaev genus one links semi-adequate?

Happy Birthday Scott!

