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Overview

» The Khovanov homology Kh(L) of a link L is a categorification

of the Jones polynomial of L (Khovanov - 1999).

Kh(L) = ®; jez Kh'J(L) is a bi-graded Z-module.

» Experimentally, Kh(L) has an abundance of torsion, only some
of which we can explain.

v

» Among all 1,701,936 prime knots with at most 16 crossings
1. all non-trivial knots up to 14 crossings have only 2-torsion in
their Khovanov homology,
2. 38 knots with 15 crossings and 129 knots with 16 crossings
have 4-torsion in their Khovanov homology, and
3. the first known knot with odd torsion in Kh(K) is the
(5,6)-torus knot.



Motivating conjecture

Conjecture (Shumakovitch)

Let L be any prime link other than the unknot or the Hopf link.
Then Kh(L) contains 2-torsion.

» The conjecture implies that Khovanov homology is an unknot
detector.

» Kronheimer and Mrowka (2010) proved Khovanov homology is
an unknot detector using gauge theory.

» The conjecture is known to be true in many cases.



Some more conjectures

Conjecture (Przytycki, Sazdanovi¢ - 2012)

» The Khovanov homology of a closed 3-braid can have only
2-torsion.

» The Khovanov homology of a closed 4-braid can have only
2-torsion or 4-torsion.

» The Khovanov homology of a closed n-braid cannot have
p-torsion for p > n, where p is prime.



Methods

Some approaches for proving things about torsion in Khovanov
homology are:

» explicit construction,
» connections with Hochschild homology,
» connections with chromatic polynomial homology, and

» spectral sequence arguments.



Computations of odd torsion

» Torus knots (5,6), (5,7), (5,8), and (5,9) have 5-torsion in
their Khovanov homology.

» Przytycki and Sazdanovi¢ predicted that the closure K of
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has 5-torsion in its Khovanov homology.

» Shumakovitch (2012) confirmed that K has 5-torsion in its
Khovanov homology by showing that the difference of the
Poincare polynomials of Kh(K; Zs) and Kh(K;Zz7) is

(t12 + tll)q51 + (tll + th)q47‘



Kh(K, Z5)
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2q41t6 + 2q43t7 + 2q45t7 + 4q41t8 + 3q43t8 + q47t8 + 13q43t9 + 4q45t9 + 4q47t9 + 2q43t10 +
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Kh(K, Z7)

K Hy(K)
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65q87t33 + 7q87t34 + 26q89t34 + q89t35 + 7q91t35 + q93t36



Kauffman states

» Each crossing has an A and a B resolution.

(= X=X

» The collection of simple closed curves in the plane obtained by
taking an A or B resolution at each crossing is a Kauffman
state.

» The all-A state graph Ga(D) of D has vertices corresponding
to the components of the all-A state of D and edges
corresponding to the crossings of D. One can similarly define
the all-B state graph Gg(D).



A 3-crossing unknot
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Adequate and semi-adequate links

» A link L is adequate if it has a diagram where both G4(D) and
Gg(D) have no loops.

» A link L is semi-adequate if it has a diagram D where either
Ga(D) or Gg(D) has no loops.

» Alternating links are adequate.

» Many links are semi-adequate. For example, Stoimenow
(2012) computed at least 249,649 of the 253,293 knots with
crossing number 15 are semi-adequate.



Explicit computation results

Theorem (Asaeda, Przytycki - 2004)

1. If Ga(D) is loop-less and contains a cycle of odd length, then
Kh(D) contains 2-torsion.

2. If Ga(D) is loop-less and contains a cycle of even length with
an edge that is not part of a bigon, then Kh(D) contains
2-torsion.

3. If D is prime and alternating and D is not the unknot or Hopf
link, then either Ga(D) or Gg(D) contains an edge that is not
part of a bigon. Thus Kh(D) contains 2-torsion.

Remark. Shumakovitch's conjecture is true for alternating links
and “many” semi-adequate links.



Hochschild homology and Kh(T3,,)

» Let P, be the polygon with n vertices.

» Let C,(A) be the space generated by labelings of the vertices
of P, with elements of A.

» Define a map C,(A) — C,_1(A) obtained by contracting
edges and multiplying the labels on the identified vertices.

» Przytycki (2005) showed this complex gives the Hochschild
homology HH(A) and the Khovanov homology of Kh(T>,,) in
certain gradings.

» Allows for explicit computations of 2-torsion inside of
Kh(T2,n).



From Hochschild to chromatic polynomial cohomology

» Hochschild homology gives a sort of comultiplication free
version of Khovanov homology for a polygon.

» Helme-Guizon and Rong (2004) define the chromatic
polynomial cohomology. It can be simultaneously thought of
as a comultiplication free version of Khovanov homology for
any graph or as an extension of Hochschild homology for any

graph.

» Its definition follows a similar recipe as the construction of
Khovanov homology.



Khovanov and chromatic homology

v

Let D be a link diagram, and let G be its all-A state graph.

v

The Khovanov homology of D is Kh(D).
» The chromatic homology of G is H(G).

» Both are bigraded:

N}

Kh(D) = @ Kh¥(D) and H(G) = (P H"/(G).
ij

» Let A = Z[x]/(x?).
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Kauffman states
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Spanning subgraphs
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Kauffman states and spanning subgraphs




Kauffman states and spaces
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Spanning subgraphs and spaces
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Multiplication until a cycle closes

A2

@A

2

0N

©A®?




Partial Isomorphism Picture
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Comparing Kh(D) and H(G)

Theorem (Helme-Guizon, Przytycki, Rong - 2006)

If the length ( of the shortest cycle in G is greater than one, then
there is an isomorphism between Kh(D) and H(G) in the first £ — 1
supported i-gradings and an isomorphism of Tor Kh(D) and

Tor H(G) in the (th i-grading.



Chromatic homology results

» Pabiniak, Przytycki, and Sazadnovi¢ (2006) use Hochschild
homology and chromatic cohomology to explicitly compute
Khovanov homology (including torsion) of semi-adequate links
in certain gradings.

» Przytycki and Sazdanovi¢ (2012) strengthen the relationship
between chromatic polynomial cohomology and Khovanov
homology by modifying the comultiplication map in the
chromatic complex.



More on semi-adequate links

» So far. The Khovanov homology of semi-adequate links where
Ga(D) contains an odd cycle or an even cycle with an edge
that is not part of a bigon contains 2-torison.

» New from Przytycki, Sazdanovié. The Khovanov homology
of any link where Ga(D) has shortest cycle with length at least
3 contains 2-torsion.

» Result. Shumakovitch's conjecture is true for all
semi-adequate links except possibly those where Ga4(D) only
has 2-cycles.



Our philosophy

» Chromatic homology is similar to the Khovanov homology of
alternating knots.

» The previous partial isomorphism theorem says that the
Khovanov homology of a link looks like the chromatic
homology of a related graph in extremal homological gradings.

» Khovanov homology in extremal homological gradings should
look like the Khovanov homology of an alternating knot.



Khovanov homology of alternating knots

» Lee (2002) proves that the Khovanov homology of an
alternating knot is homologically thin, that is it is entirely
supported on two adjacent j — 2/ diagonals.

» Shumakovitch (2004) proves that the Khovanov homology of
an alternating knot contains no torsion of odd order.

» Shumakovitch (unpublished) proves that the Khovanov
homology of an alternating knot contains only 2-torsion (and
no torsion of order 2% for k > 1).



Chromatic homology similarities

» Chmutov, Chmutov, and Rong (2005) prove that chromatic
homology is homologically thin.

» We show that chromatic homology has no odd torsion.

» (In progress) We hope to show that chromatic homology has
only 2-torsion.



The girth of a link

The girth of a graph G is the length of the shortest cycle in G. The
A-girth of a link diagram D is the girth of the graph Ga(D). The
A-girth of a link L is

girth, (L) = max{girth,(D) | D is a diagram of L}.

One can similarly define girthg(L).



Results on girth

» If K is non-trivial, then girth(L) is finite.

» Khovanov homology can provide an upper bound for girth 4(L).
If Kh(L) is homologically thick in its m-th homological
grading, then girth,(L) < m.

» Suppose the first m — 1 coefficients of the Jones polynomial
V| (t) alternate in sign, but the (m — 1)-st and m-th
coefficients have the same sign. Then girth,(L) < m.
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Spectral sequences

» Khovanov homology and related invariants arise in many
spectral sequences.

» These spectral sequences are often only defined over certain
coefficient rings (e.g. Q, Zy, or Z, for odd p).

» Use the behavior of these sequences to prove or disprove the
existence of torsion.



Lee's differential

» Work over Q (and Z, for odd p).

» Define Q-linear maps

1®1—0 1®x+—10
XxX®1—-0 x®x—1
1—0

x—1®1.

me ARA— A mq,:{
A@AHAC@A Aq;:{

» Using the same conventions as in the definition of Khovanov
homology, define a differential ® on CKh(D).



Lee's spectral sequence

» (CKh(D),d,®) form a double complex, and so there is an
associated spectral sequence

» For a knot, the spectral sequence converges to Q @ Q.

» Shumakovitch (2004) showed that this spectral sequence also
exists over Zp for p an odd prime.



Gradings and Lee's spectral sequence

» Lee's differential is of bidegree (1,4).

» The bidegree of the map on the r-th page of the spectral
sequence is (1,4r).

» In all known examples (over Q) the spectral sequence collapses
after the bidegree (1,4) differential.

» In such cases, Kh(D; Q) can be arranged into “knight move”
pairs.



Knight move example 77
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Analog in chromatic homology

» Chmutov, Chmutov, and Rong (2005) proved that the
chromatic complex over Q has a differential similar to ®.

» Leads to a spectral sequence analogous to the Lee spectral
sequence.

» Chromatic homology is homologically thin and much of the
homology can be arranged in “knight move” pairs.



An odd torsion theorem for Khovanov homology

Theorem (Shumakovitch - 2004)
If L is homologically thin, then Kh(L) contains no odd torsion.



Proof

Suppose that Kh(L) has p-torsion for some odd prime p. It can be
shown that all torsion appears on the “bottom” diagonal. Let
(fo, jo) be the grading with p-torsion where iy is minimal.

Zp




Proof

Then dimg, KhJ (D) > dimg Kh0(D). Since the Euler
characteristic is the same over both Z, and Q,

dimgz, Kh°~14 (D) > dimg Kh° 14 (D).

Zp | Zp




Proof

Since Kh(D) lies on only two diagonals, the Lee spectral sequence
implies that

dimg Kh'/ (D) = dimg Kh"*1/*4(D) and
dimz, Kh'/(D) = dimz, Kh'*1/*4(D).
In particular, dimz, Kho=20=4(D) > dimg Kh'o=20=4(D).

Zp | Zp




Proof

But dimy, Kho=2/0=4(D) > dimg Kh©~2/0~4(D) implies that
Kh(D) has p-torsion in grading (ip — 2, jo — 4) which is a
contradiction.

Z, | Z,




An odd torsion theorem for chromatic homology

Theorem (L., Sazdanovi¢)
The chromatic polynomial cohomology of any graph contains no
odd torsion.

Sketch of proof. Show that the Lee map in chromatic homology
works over Zj, for odd p, and repeat the previous proof.



Application to semi-adequate links

Corollary

Let D be link diagram such that girth,(D) > 1. Then Kh(D) has
no odd torsion in its first girth ,(D) supported homological
gradings. Similarly, if girthg(D) > 1, then Kh(D) has no odd
torsion in its last girthg(D) supported homological gradings.



An odd Khovanov version

Corollary

Let D be link diagram whose all-A state graph Ga(D) is planar and
has girth ¢, and let KW' (D) denote the odd Khovanov homology of
the link. Then Kh'(D) is torsion free in its first { supported
i-gradings.

Proof.

Since Ga(D) is planar, there is an alternating diagram D’ with
Ga(D') = Ga(D). One can show that KK’ (D) and KH'(D') are
isomorphic in the first £ — 1 supported homological gradings and
have isomorphic torsion in the first £ supported homological
gradings. Because D’ is alternating, its odd Khovanov homology is
torsion free, and the result follows. O



From no odd torsion to only 2-torsion

For the remainder of the talk we outline Shumakovitch's
unpublished proof that the Khovanov homology of a homologically
thin knot has only 2-torsion.

We end by remarking what parts of that program we have
accomplished for chromatic homology.



Some maps on Kh(D; Z,)

Shumakovitch defines maps v of bidegree (0,2) on CKh(D;Zs).



Properties of v

» v commutes with the Khovanov differential, and thus induces
a map v* : Kh(D;Z,) — Kh(D;Zs).

» Homology with respect to v is trivial, and so v* is an
isomorphism.

» The "vertical” Euler characteristic of Kh(D;Z) is trivial.



Knight moves - what we've shown so far

over Q

T
Zo | Zo
L
over Zo

Z
Lok
Z
over Z




Knight moves - what we will show

over Q

T
Zo | Zo
L
over Zo

Z
L
Z
over Z




Spectral sequence associated to an exact couple

Dl—)Dl

N,

Given the above exact triangle, define di = j1 o ky : E; — E;. Then
d? = jiokioj; ok = 0. Define £, = H(Ey, d1) and

D> = Im(ih) = Ker(j1). Then maps i, j2, and ky can be defined so
that the following triangle is exact.

D2 —) D2

AN

Iterating this process yields a spectral sequence {E,, d,}.



A long exact sequence

The short exact sequence

mod 2
—_—

0272227 Zo — 0

induces a short exact sequence of complexes

mod 2
—_—

0 — CKh(D) =2 CKh(D) CKh(D; Z5) — 0,

which induces a long exact sequence on homology

.+ — Kh(D) 22 Kh(D) —™42,

Kh(D; Z3) 5 Kh(D) — - -- .



Bockstein spectral sequence

Kh(D) =5 Kh(D)

0 mod p
Kh(D; Z5)

O
8

The above triangle is an exact couple. Define
B : Kh(D;Zy) — Kh(D;Zs) by B = ¢ mod p.

There exists a spectral sequence {B,, b,} with By = Kh(D; Z,) and
by = [ that converges to the free part of Kh(D) tensored with Z,.



More on the Bockstein spectral sequence

Theorem
Kh(D) has no 2 torsion if and only if the Bockstein spectral
sequence collapses at the kth page.

New Goal. Show that the Bockstein spectral sequence collapses at
the first page for homologically thin links.



Turner's differential with Z, coefficients

» Define Zs-linear maps

1®1—-0 1®x—0
XxX®1—0 x®x+— x
1—-1®1

x — 0.

mr: AQA—> A mr :
AT.A—>.A®.A ATZ

» Using the same conventions as in the definition of Khovanov
homology, define a differential drymer on CKh(D; Z5).



Turner's spectral sequence on Kh(D; Z,)

» (CKh(D;Z3), d, dturmer) form a double complex, and so there
is an associated spectral sequence.

» drumer commutes with the usual Khovanov differential, and so
there is an induced map df : Kh(D; Z2) — Kh(D; Zy).

urner

» For a knot, the above spectral sequence converges to Z, @ Zo».
If the homology is thin, the last non-zero map in the spectral

sequence is dy, e



Putting it all together

[

—

| /] dz

Turner

v* : Kh(D;Zy) — Kh(D;Z3) is an isomorphism.

The Turner spectral sequence collapses at the first page.
d;:urner :V*Oﬁ—’_IBOV*'

(1) - (3) implies that the Bockstein spectral sequence collapses
after the first page.

el A



Torsion in Khovanov homology of homologically thin knots

Theorem (Shumakovitch)

If K is homologically thin, then its Khovanov homology only has
2-torsion.

Corollary

The Khovanov homology of an alternating knot is determined by its
Jones polynomial.

Corollary

If K is a nontrivial, homologically thin knot, then its Khovanov
homology contains 2-torsion.

Remark. The second corollary requires Kronheimer-Mrowka's
result that Khovanov homology detects the unknot.



Our progress

1. Maps analogous to v and drymer exist in chromatic homology
and commute with the chromatic differential.

2. The map v* is an isomorphism on chromatic homology.

3. The chromatic Turner spectral sequence collapses where it is
supposed to.

4. The Bockstein spectral sequence can be defined on chromatic

homology.
=v¥of+ [fov*.

H *
5. Remains to show. df .,



Consequences if (5) is true

» Chromatic homology only contains 2-torsion.

» Khovanov homology only contains 2-torsion in the first
girth,(D) and last girthg(D) homological gradings.

» Chromatic homology is determined by the chromatic
polynomial (not true when working with other algebras).



Thank youl!



