The Jones polynomial of almost alternating and Turaev genus one links

Adam Lowrance - Vassar College Oliver Dasbach - LSU

April 30, 2016

Almost alternating links (Adams et. al.)

A non-alternating link is almost alternating if it has a diagram that can be transformed into an alternating diagram via one crossing change.

A prime almost alternating knot is either hyperbolic, $T(3,4)$ or $T(3,5)$ (Abe, Kishimoto).

All non-alternating knots with eleven or fewer crossings except possibly $11 n_{95}$ and $11 n_{118}$ are almost-alternating.

Not almost alternating?

A non-alternating knot K is not almost alternating if

- K is prime and satellite,
- the reduced Khovanov homology $\widetilde{K h}(K)$ lies on more than two adjacent diagonals (Wehrli, Champanerkar-Kofman), or
- the knot Floer homology $\widehat{H F K}(K)$ lies on more than two adjacent diagonals (Ozsváth, Szabó).

The Jones polynomial of an almost alternating link

Let $V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ be the Jones polynomial of L where a_{m} and a_{n} are nonzero.

Theorem (Dasbach, L.)
If L is almost-alternating, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

A low crossing result

$V_{11 n_{95}}(t)=2 t^{2}-3 t^{3}+5 t^{4}-6 t^{5}+6 t^{6}-5 t^{7}+4 t^{8}-2 t^{9}$ implies
$11 n_{95}$ is not almost alternating.

Sketch: tangle closures

A tangle R, its numerator closure $N(R)$ and its denominator closure $D(R)$.

Sketch: almost alternating diagram

If D is almost-alternating, then it has a diagram as below.

Sketch: Kauffman bracket computation

- $\langle D\rangle=A\langle D(R)\rangle+A^{-1}\langle N(R)\rangle$.
- Both $D(R)$ and $N(R)$ are alternating diagrams.
- For any alternating diagram $D_{\text {alt }}$, the extreme coefficients of $\left\langle D_{\text {alt }}\right\rangle$ are ± 1 (Kauffman).
- The extreme coefficients of $A\langle D(R)\rangle$ and $A^{-1}\langle N(R)\rangle$ cancel with one another.

Sketch: adjacent faces

- Let $\operatorname{adj}\left(u_{1}, u_{2}\right)$ be the number of faces of $N(R)$ adjacent to both u_{1} and u_{2}.
- Let $\operatorname{adj}\left(v_{1}, v_{2}\right)$ be the number of faces of $D(R)$ adjacent to both v_{1} and v_{2}.

Sketch: adjacent faces example

$\operatorname{adj}\left(u_{1}, u_{2}\right)=3$

$\operatorname{adj}\left(v_{1}, v_{2}\right)=0$

Sketch: more Kauffman bracket

- Dasbach, Lin (2006) implies that the absolute values of the extreme terms of $\langle D\rangle$ are

$$
\left|\operatorname{adj}\left(u_{1}, u_{2}\right)-1\right| \text { and }\left|\operatorname{adj}\left(v_{1}, v_{2}\right)-1\right| .
$$

- If $\operatorname{adj}\left(u_{1}, u_{2}\right) \geq 3$, then $\operatorname{adj}\left(v_{1}, v_{2}\right)=0$ (and vice versa).
- Theorem holds unless $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$.
- If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then L has an almost-alternating diagram with fewer crossings than D.

Sketch: $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$
If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then D has diagram as below.

v_{2}

Sketch: isotopy

Sketch: isotopy

Sketch: isotopy

Sketch: isotopy

Sketch: isotopy

The Turaev surface in pictures

Turaev genus

For a diagram D of a link L, let $g_{T}(D)$ denote the genus of the Turaev surface $F(D)$.

The Turaev genus $g_{T}(L)$ of the link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\} .
$$

Classification of links of Turaev genus one

Theorem (Armond, L.; Kim)
(1) Let $R_{1}, \ldots, R_{2 k}$ be alternating two-tangles, and let D be a link diagram connecting $R_{1}, \ldots, R_{2 k}$ as depicted above. Then $g_{T}(D)=1$.
(2) Moreover, if L is a non-split link with $g_{T}(L)=1$, then L has a diagram as above.

Mutation

Theorem (Armond, L.)
If $g_{T}(L)=1$, then L is mutant to an almost-alternating link.
Corollary
Let $V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ be the Jones polynomial of L where a_{m} and a_{n} are nonzero. If L is Turaev genus one, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Mutation proof

Mutation proof continued

Questions

- Does $g_{T}(L)=1$ imply almost alternating?
- Does almost alternating imply semi-adequate?

Thank you!

