The Jones polynomial of almost alternating and Turaev genus one links

Adam Lowrance - Vassar College Oliver Dasbach - LSU

April 30, 2016

Almost alternating links (Adams et. al.)

A non-alternating link is *almost alternating* if it has a diagram that can be transformed into an alternating diagram via one crossing change.

A prime almost alternating knot is either hyperbolic, T(3,4) or T(3,5) (Abe, Kishimoto).

All non-alternating knots with eleven or fewer crossings except possibly $11n_{95}$ and $11n_{118}$ are almost-alternating.

Not almost alternating?

A non-alternating knot K is not almost alternating if

- K is prime and satellite,
- the reduced Khovanov homology Kh(K) lies on more than two adjacent diagonals (Wehrli, Champanerkar-Kofman), or
- the knot Floer homology HFK(K) lies on more than two adjacent diagonals (Ozsváth, Szabó).

The Jones polynomial of an almost alternating link

Let $V_L(t) = a_m t^m + a_{m+1} t^{m+1} + \cdots + a_{n-1} t^{n-1} + a_n t^n$ be the Jones polynomial of *L* where a_m and a_n are nonzero.

Theorem (Dasbach, L.)

If L is almost-alternating, then either $|a_m| = 1$ or $|a_n| = 1$ (or both equal 1).

A low crossing result

 $V_{11n_{95}}(t) = 2t^2 - 3t^3 + 5t^4 - 6t^5 + 6t^6 - 5t^7 + 4t^8 - 2t^9$ implies $11n_{95}$ is not almost alternating.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch: tangle closures

A tangle R, its numerator closure N(R) and its denominator closure D(R).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch: almost alternating diagram

If D is almost-alternating, then it has a diagram as below.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch: Kauffman bracket computation

- $\langle D \rangle = A \langle D(R) \rangle + A^{-1} \langle N(R) \rangle.$
- Both D(R) and N(R) are alternating diagrams.
- For any alternating diagram D_{alt} , the extreme coefficients of $\langle D_{alt} \rangle$ are ± 1 (Kauffman).
- The extreme coefficients of $A\langle D(R)\rangle$ and $A^{-1}\langle N(R)\rangle$ cancel with one another.

Sketch: adjacent faces

- Let adj(u₁, u₂) be the number of faces of N(R) adjacent to both u₁ and u₂.
- Let adj(v₁, v₂) be the number of faces of D(R) adjacent to both v₁ and v₂.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sketch: adjacent faces example

Sketch: more Kauffman bracket

• Dasbach, Lin (2006) implies that the absolute values of the extreme terms of $\langle D \rangle$ are

 $|\operatorname{adj}(u_1, u_2) - 1|$ and $|\operatorname{adj}(v_1, v_2) - 1|$.

- If $adj(u_1, u_2) \ge 3$, then $adj(v_1, v_2) = 0$ (and vice versa).
- Theorem holds unless $adj(u_1, u_2) = adj(v_1, v_2) = 1$.
- If adj(u₁, u₂) = adj(v₁, v₂) = 1, then L has an almost-alternating diagram with fewer crossings than D.

Sketch: $adj(u_1, u_2) = adj(v_1, v_2) = 1$

If $adj(u_1, u_2) = adj(v_1, v_2) = 1$, then D has diagram as below.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Turaev surface in pictures

★□▶ ★圖▶ ★国▶ ★国▶ 二回

Turaev genus

For a diagram D of a link L, let $g_T(D)$ denote the genus of the Turaev surface F(D).

The Turaev genus $g_T(L)$ of the link L is

 $g_T(L) = \min\{g_T(D) \mid D \text{ is a diagram of } L\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Classification of links of Turaev genus one

Theorem (Armond, L.; Kim)

- Let R₁,..., R_{2k} be alternating two-tangles, and let D be a link diagram connecting R₁,..., R_{2k} as depicted above. Then g_T(D) = 1.
- 2 Moreover, if L is a non-split link with $g_T(L) = 1$, then L has a diagram as above.

Mutation

Theorem (Armond, L.)

If $g_T(L) = 1$, then L is mutant to an almost-alternating link.

Corollary

Let $V_L(t) = a_m t^m + a_{m+1} t^{m+1} + \cdots + a_{n-1} t^{n-1} + a_n t^n$ be the Jones polynomial of L where a_m and a_n are nonzero. If L is Turaev genus one, then either $|a_m| = 1$ or $|a_n| = 1$ (or both equal 1).

Mutation proof

Mutation proof continued

Questions

・ロト・日本・モト・モート ヨー うへで

- Does $g_T(L) = 1$ imply almost alternating?
- Does almost alternating imply semi-adequate?

Thank you!

