Invariants of Turaev genus one knots

Adam Lowrance - Vassar College

March 13, 2016

Construction of the Turaev surface $F(D)$

(1) Replace arcs of D not near crossings with bands transverse to the projection plane.
(2) Replace crossings of D with saddles interpolating between the all- B and all- A states of D
(3) Cap off the boundary components with disks to obtain $F(D)$.

The Turaev surface in pictures

The pretzel knot $P(3,3,-2)$

The Turaev surface $F(P(3,3,-2))$

Turaev genus

- For a diagram D of a link L, let $g_{T}(D)$ denote the genus of the Turaev surface $F(D)$.
- The Turaev genus $g_{T}(L)$ of the link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\}
$$

Some history of the Turaev surface

- Turaev (1987) related $F(D)$ to the difference between the span of the Jones polynomial and the crossing number.
- DFKLS (2006) - Connections with the Jones polynomial.
- Champanerkar, Kofman, and Stoltzfus (2007) - Connections with spanning tree version of Khovanov homology.
- L. (2007) - Connections with spanning tree version knot Floer homology.
- Dasbach, L. (2009) - Connections with signature, and the s and τ invariants.
- Dasbach, L. (2015) - A Turaev surface model of Khovanov homology.

Classification of links of Turaev genus one

Theorem (Armond, L.; Kim)
(1) Let $R_{1}, \ldots, R_{2 k}$ be alternating two-tangles, and let D be a link diagram connecting $R_{1}, \ldots, R_{2 k}$ as depicted above. Then $g_{T}(D)=1$.
(2) Moreover, if L is a non-split link with $g_{T}(L)=1$, then L has a diagram as above.

Examples: Pretzel links

If L is a non-alternating pretzel link, then $g_{T}(L)=1$.

A pretzel link on the torus

Another example

Determinant and signature of a knot

- Let V be a Seifert matrix for the knot K.
- The determinant is $\operatorname{det}(K)=\left|\operatorname{det}\left(V+V^{T}\right)\right|$.
- The signature of is $\sigma(K)=\sigma\left(V+V^{T}\right)$.

Numerator and denominator

A tangle R, its numerator closure $N(R)$ and its denominator closure $D(R)$.

A determinant formula

Theorem (Dasbach, L.)
Let L be a link with diagram D as in the Turaev genus one classification result. Then the determinant of L is
$\left|\sum_{i=1}^{2 k}(-1)^{i} \operatorname{det} D\left(R_{1}\right) \cdots \operatorname{det} D\left(R_{i-1}\right) \operatorname{det} N\left(R_{i}\right) \operatorname{det} D\left(R_{i+1}\right) \cdots \operatorname{det} D\left(R_{2 k}\right)\right|$.

- Generalizes formula for the determinant of Montesinos links.
- Related to the formula for the determinant of Turaev genus one links by DFKLS.

A determinant example

A signature formula

Theorem (Dasbach, L.)

Let K be a knot with diagram D as in the Turaev genus one classification result. Let $s_{A}(D)$ be the number of components in the all-A resolution of D, and let $c_{+}(D)$ be the number of positive crossings in D. The signature of K is determined by

$$
\sigma(K)=s_{A}(D)-c_{+}(D) \pm 1 \text { and } \sigma(K) \equiv \operatorname{det}(K)-1 \quad \bmod 4
$$

- If K has alternating diagram D, then Traczyk showed that $\sigma(K)=s_{A}(D)-c_{+}(D)-1$.
- The above result follows from some earlier work relating Turaev genus to signature.

A signature example

$$
\begin{aligned}
\sigma(K) & =s_{A}(D)-c_{+}(D) \pm 1 \\
& =9-0 \pm 1 \\
& =8 \text { or } 10 . \\
\operatorname{det}(K) & =45 . \\
8 & \equiv 45-1 \bmod 4 . \\
\sigma(K) & =8 .
\end{aligned}
$$

Signature: Part two

Theorem (Dasbach, L.)
Let L be a link with Turaev genus one diagram D as in the classification result. Either

$$
\begin{aligned}
& \sigma(L)= \pm 1+\sum_{i=1}^{2 k} \sigma\left(N\left(R_{i}\right)\right) \text { or } \\
& \sigma(L)= \pm 1+\sum_{i=1}^{2 k} \sigma\left(D\left(R_{i}\right)\right)
\end{aligned}
$$

where the orientation of L determines the choice.

Almost-alternating links

- A link diagram D is almost-alternating if one crossing change transforms D into an alternating diagram (Adams, Brock, Bugbee - 1992).
- A link L is almost-alternating if it is non-alternating and has an almost-alternating diagram.
- If L is almost-alternating, then $g_{T}(L)=1$.

Mutation

- Let B be a 3-ball whose boundary intersects the link L in exactly 4 -points. A mutation of L is a link obtained by removing B from S^{3}, rotating it 180° about a principle axis, and then gluing B back into S^{3}.
- Any two links related to one another via a sequence of mutations are said to be mutant to one another.

Theorem (Armond, L.)
If $g_{T}(L)=1$, then L is mutant to an almost-alternating link.

Mutation proof

Mutation proof continued

Jones polynomial results

Let $V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ be the Jones polynomial of L where a_{m} and a_{n} are nonzero.

Theorem (Dasbach, L.)
If L is almost-alternating, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Corollary
If $g_{T}(L)=1$, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

An example: $11 n_{95}$

$$
V_{11 n_{95}}(t)=2 t^{2}-3 t^{3}+5 t^{4}-6 t^{5}+6 t^{6}-5 t^{7}+4 t^{8}-2 t^{9}
$$

Low crossing results

- Among all non-alternating knots with 12 or fewer crossings, it is unknown whether 37 of them have Turaev genus one (according to Jablan's and Howie's computations on Knot Info).
- Our work shows that 12 of these 37 knots do not have Turaev genus one (and thus have Turaev genus two).

Thank you!

