Alternating distances of knots and links

Adam Lowrance - Vassar College

July 24, 2014

Alternating distance

An integer valued knot invariant d(K) is an alternating distance if

- $d(K) \ge 0$ for every knot K,
- d(K) = 0 if and only if K is alternating, and
- $d(K_1 \# K_2) \le d(K_1) + d(K_2)$ for all knots K_1 and K_2 .

Comparing alternating distances

Let d_1 and d_2 be alternating distances, and let $\mathcal F$ be some family of knots. We say d_1 dominates d_2 on $\mathcal F$ if for each positive integer n, there exists a knot $K_n \in \mathcal F$ such that

$$d_1(K_n)-d_2(K_n)\geq n.$$

The Turaev surface

- Knot diagram $D \rightsquigarrow \text{Turaev surface } F(D)$.
- Turaev (1987) used F(D) to give simplified proofs of some Tait conjectures.
- DFKLS (2006) Connections with the Jones polynomial.
- Champanerkar, Kofman, and Stoltzfus (2007) Connections with Khovanov homology.
- L. (2007) Connections with knot Floer homology.
- Dasbach, L. (2009) Connections with signature, and the s and τ invariants.

Construction of the Turaev surface F(D)

- 1. Replace crossings of D with disks.
- 2. Replace strands of *D* between crossings with (sometimes twisted) bands.
- 3. Cap off the boundary components with disks to obtain F(D).

The Turaev surface - in pictures

Turaev genus

The Turaev genus $g_T(K)$ of the knot K is

$$g_T(K) = \min\{g(F(D)) \mid D \text{ is a diagram of } K\}.$$

Theorem (DFKLS)

The Turaev genus of K is zero if and only if K is alternating. Moreover, the Turaev genus of a knot is an alternating distance.

More facts about the Turaev surface

- 1. F(D) is a Heegaard surface in S^3 .
- 2. D is alternating on F(D).
- 3. The complement of D in F(D) is a collection of disks that can be two-colored in a checkerboard fashion.

Question. If a surface satisfies (1) - (3) above, is it the Turaev surface of some knot?

Answer, No.

Alternating genus of a knot

- Let $g_{alt}(K)$ denote the minimum genus surface satisfying (1)-(3) from the previous slide.
- Knots K with $g_{alt}(K) = 1$ were studied by Adams (1994).
- The alternating genus of a knot is an alternating distance.
- $g_{\text{alt}}(K) \leq g_T(K)$ for any knot, but there exists knots where $g_T(K)$ is much larger than $g_{\text{alt}}(K)$.

A modified torus knot $\widetilde{T}_{4,4k+3}$

Let B_4 be the braid group on 4-strands, and let $\Delta \in B_4$ denote the braid

$$\Delta = \sigma_1 \sigma_2 \sigma_3$$
.

Let $\widetilde{\Delta}$ denote the braid

$$\widetilde{\Delta} = \sigma_1 \sigma_2^{-1} \sigma_3.$$

For each non-negative integer k, define $\widetilde{T}_{4,4k+3}$ to be the closure of the braid

$$\Delta^{4k+2}\widetilde{\Delta}$$
.

Let $\mathcal{F}(\widetilde{T}_{4,4k+3})$ be the set of such modified torus knots.

Example: $\widetilde{T}_{4,3}$

Example: $\widetilde{T}_{4,3}$

Turaev genus dominates alternating genus

Theorem

Turaev genus dominates alternating genus on $\mathcal{F}(\widetilde{T}_{4,4k+3})$.

Overview of proof.

- $g_{\text{alt}}(\widetilde{T}_{4,4k+3}) = 1$ for any non-negative integer k.
- $g_T(\widetilde{T}_{4,4k+3}) \to \infty$ as $k \to \infty$.

The Turaev genus of $T_{4,4k+3}$

1. Dasbach, L. (2009) For any knot K,

$$|s(K) + \sigma(K)| \leq 2g_T(K).$$

- 2. Use Gordon, Litherland, and Murasugi (1981) to compute $\sigma(T_{4,4k+3})$.
- 3. The Rasmussen s invariant and the signature of a knot can change by at most two for each crossing change.
- 4. Use (2) and (3) to show that $|s(\widetilde{T}_{4,4k+3}) + \sigma(\widetilde{T}_{4,4k+3})| \to \infty$ as $k \to \infty$.
- 5. Thus (1) implies $g_T(\widetilde{T}_{4,4k+3}) \to \infty$ as $k \to \infty$.

Sufficient conditions for being a Turaev surface

Recall that the Turaev surface F(D) satisfies the following.

- 1. F(D) is a Heegaard surface in S^3 .
- 2. D is alternating on F(D).
- 3. The complement of D in F(D) is a collection of disks that can be two-colored in a checkerboard fashion.

Sufficient conditions for being a Turaev surface.

- Champanerkar, Kofman (2014) Conditions (1)-(3) plus a Morse theoretic condition.
- Armond, Druivenga, Kindred (in progress) Conditions (1)-(3) plus a Heegaard diagram condition.

The dealternating number

Let D be a diagram of K. The dealternating number of D, denoted dalt(D), is the minimum number of crossing changes required to transform D into an alternating diagram.

Adams (1992) defines the dealternating number of K as $dalt(K) = min\{dalt(D) \mid D \text{ is a diagram of } K\}.$

The alternation number

Let D be a diagram of K. The alternation number of D, denoted alt(D), is the minimum number of crossing changes required to transform D into a (possibly non-alternating) diagram of an alternating knot.

Kawauchi (2010) defines the alternation number of K as $alt(K) = min\{alt(D) \mid D \text{ is a diagram of } K\}.$

More alternating distances

- The dealternating number of a knot is an alternating distance.
- The alternation number of a knot is an alternating distance.
- Let c(K) denote the crossing number of K, and let $V_K(t)$ denote the Jones polynomial of K. Then

$$c(K)$$
 – span $V_K(t)$

is an alternating distance (Kauffman - 1987, Murasugi - 1987).

Inequalities

The following inequalities hold for every knot K:

- 1. $g_{alt}(K) \leq g_T(K)$.
- 2. $alt(K) \leq dalt(K)$.
- 3. $g_T(K) \leq dalt(K)$ (Abe 2008).
- 4. $g_T(K) \le c(K) \text{span } V_K(t) \text{ (Turaev 1987)}.$

Our inequalities

Whitehead doubles

The *t*-twisted positive Whitehead double of *K*

Turaev genus dominates alternation number

Let W_n be the *n*-th iterated, positive, untwisted Whitehead double of the figure-eight knot. Let $\mathcal{F}(W_n)$ be the set of all W_n .

Theorem

Turaev genus dominates alternation number on $\mathcal{F}(W_n)$.

Proof sketch.

- $alt(W_n) = 1$ for each n > 0.
- Knot Floer homology tells us $g_T(W_n) \to \infty$ as $n \to \infty$.

Alternation number and alternating genus

Theorem

The alternation number and alternating genus of a knot are not comparable.

Proof sketch.

• Using a similar argument from before, we have

$$g_{\mathsf{alt}}(\widetilde{T}_{4,4k+3}) < \mathsf{alt}(\widetilde{T}_{4,4k+3}).$$

• Adams (1994) proves that $g_{alt}(W_n) > 1$ and so

$$alt(W_n) < g_{alt}(W_n).$$

c(K) – span $V_K(t)$ dominates dealternating number

Theorem

The difference c(K) – span $V_K(t)$ dominates the dealternating number on the set of (3, q)-torus knots.

The proof pieces together prior results of Jones (1987), Murasugi (1991) and Abe (2008).

Open Questions

- 1. Are the Turaev genus and the dealternating number the same invariant, i.e. does $g_T(K) = \text{dalt}(K)$ for every knot K?
- 2. Is $dalt(K) \le c(K) span V_K(t)$ for every knot K?
- 3. Is $alt(K) \le c(K) span V_K(t)$ for every knot K?
- 4. Is $alt(K) \leq g_T(K)$ for every knot K?