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Alternating distance

An integer valued knot invariant d(K) is an alternating distance if
e d(K) > 0 for every knot K,
e d(K) =0 if and only if K is alternating, and

o d(Ki#K2) < d(Ki) + d(Kz) for all knots K1 and Kj.



Three alternating distances

e The Turaev genus g7(K) of the knot K.
e The alternating genus gut(K) of the knot K.

e The dealternating number dalt(K) of the knot K.



The Turaev surface

Knot diagram D ~~ Turaev surface F(D).

Turaev (1987) used F(D) to give simplified proofs of some
Tait conjectures.

DFKLS (2006) - Connections with the Jones polynomial.

Champanerkar, Kofman, and Stoltzfus (2007) - Connections
with Khovanov homology.

L. (2007) - Connections with knot Floer homology.

Dasbach, L. (2009) - Connections with signature, and the s
and T invariants.



Construction of the Turaev surface F(D)

1. Replace crossings of D with disks.

2. Replace strands of D between crossings with (sometimes
twisted) bands.

3. Cap off the boundary components with disks to obtain F(D).



The Turaev surface - in pictures
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A non-alternating example
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Turaev genus

e For D a diagram of a knot K, let g7 (D) be the genus of the
Turaev surface F(D).

e The Turaev genus g7(K) of the knot K is

g7(K) = min{gr(D) | D is a diagram of K}.



Turaev genus is an alternating distance

Theorem (Turaev)
The Turaev genus is an alternating distance, i.e.
e gr(K) =0 if and only if K is alternating,
e g7(K) > 0 for all knots K, and
o gr(Ki#K2) < g7(K1) + g7(K2) for all knots K1 and Kj.



Properties of the Turaev surface

1. F(D) is a Heegaard surface in S3.
2. D is alternating on F(D).

3. The complement of D in F(D) is a collection of disks that
can be two-colored in a checkerboard fashion.

Question. If a surface satisfies (1) - (3) above, is it the Turaev
surface of some knot?



The question rephrased

Let K be a knot and let F be a surface such that
1. F is a Heegaard surface of S3,
2. K has an alternating projection to F, and
3. the complement of the projection of K is a collection of disks.

Question. If K and F satisfy the above conditions, then is F the
Turaev surface of some diagram D of K7
Answer. No.

Define the alternating genus g,it(K) of K to be the minimum
genus surface satisfying (1)-(3) above.



Alternating genus of a knot

Knots K with g,i:(K) = 1 were studied by Adams (1994).

The additivity of alternating genus under connect sum was
studied by Balm (2013).

The alternating genus of a knot is an alternating distance.

gait(K) < g7(K) for any knot, but there exists knots where
g7 (K) is much larger than gi(K).



A modified torus knot 7'474k+3

Let By be the braid group on 4-strands, and let A € B, denote the
braid

A = 010703.

Let A denote the braid

-1
A =010, 03.

For each non-negative integer k, define 7_474k+3 to be the closure
of the braid
A4k+2£



Example: 7'4’3




Example: 7'473




Turaev genus vs. alternating genus

Theorem N _
The difference g1(Taak+3) — 8att( Taak4+3) — 00 as k — 0o .

Overview of proof.
° ga|t(?4,4k+3) = 1 for any non-negative integer k.

° g-r(?474k+3) — o0 as k — oo.



The alternating genus of 7'4’4k+3
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The alternating genus of 7'4,4k+3
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The alternating genus of 7'4,4k+3
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The alternating genus of Tsa+3
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The Turaev genus of 7'474k+3

. Dasbach, L. (2009) For any knot K,
[s(K) + o(K)| < 2g7(K).

. Use Gordon, Litherland, and Murasugi (1981) to compute

o ( Taak+3)-

. The Rasmussen s invariant and the signature of a knot can
change by at most two for each crossing change.

_ Use (2) and (3) to show that |s(Tyaxi3) + o( Taaks3)| = oo
as k — oc.

. Thus (1) implies gT(%4’4k+3) — 00 as k — oo.



Sufficient conditions for being a Turaev surface

Suppose K is a knot and F is a surface satisfying
1. Fis a Heegaard surface of S3,
2. K has an alternating projection to F, and
3. the complement of the projection of K is a collection of disks.

Two groups give additional conditions that ensure F is a Turaev
surface:

o Champanerkar, Kofman (2014) - Conditions (1)-(3) plus a
Morse theoretic condition.

e Armond, Druivenga, Kindred (2014) - Conditions (1)-(3) plus
a Heegaard diagram condition.



The dealternating number

Let D be a diagram of K. The dealternating number of D,
denoted dalt(D), is the minimum number of crossing changes
required to transform D into an alternating diagram.

dalt(D) =1

Adams (1992) defines the dealternating number of K as

dalt(K) = min{dalt(D) | D is a diagram of K}.



Turaev genus vs. dealternating number

Theorem (Abe, Kishimoto)
Let K be a knot. Then g1(K) < dalt(K).

Sketch of proof. The genus of the Turaev surface g7(D) changes
by at most one for each crossing change. Hence g7 (D) < dalt(D)
for every diagram D.

Question. Is there a knot K with g7(K) < dalt(K)?












Alternating tangle decomposition

Glue together alternating tangles T; and T, to get a diagram D.
Then

e gr(D) =1, but
e dalt(D) = min{c(T1),c(T2)}.



Modified alternating tangle decomposition

D

A different diagram D’ of the same knot has dalt(D’) = 1.




Longer strings of alternating tangles

The Turaev genus of any such string of 2k alternating tangles is
one. lIs the dealternating number of any such knot also one?



Thank you!
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