
Alternating tangle decompositions

Adam Lowrance - Vassar College

September 18, 2015



A common topological strategy

Suppose that we have a topological object X and want to compute
a topological invariant Inv(X ).

I Cut X into “nice” pieces X1,X2, . . . ,Xk .

I Compute Inv(X1), Inv(X2), . . . , Inv(Xk).

I Combine Inv(X1), Inv(X2), . . . , Inv(Xk) to recover Inv(X ).



How we will use this strategy

I Our topological object X will be a link or link diagram.

I Our topological invariants Inv(X ) will be Turaev genus and
signature.

I Our “nice” pieces will be maximally alternating regions of the
link diagram.



Alternating links

A link diagram is alternating if the crossings alternate over, under,
over, under, ... as one travels along each component of the link. A
link is alternating if it has an alternating diagram.

Alternating Non-alternating



Why are alternating links nice?

Alternating links have

I computable crossing numbers,

I easily computable signatures,

I easily computable link polynomials (and generalizations),

I complements with well-understood hyperbolic structures, and

I many, many more nice properties.



Alternating tangle decompositions

I Consider D as a 4-regular plane graph with over/under
information at vertices.

I Mark each non-alternating edge of D with two points.

I Connect marked points with non-intersecting arcs inside the
faces of D that follow along the boundary of each face.

I The resulting collection of curves is the alternating tangle
decomposition of D (Thistlethwaite - 1988).



Arcs following the boundary of a face

Good Bad
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Alternating decomposition graph

I The alternating tangle decomposition curves partition S2 into
regions in which D is either alternating or has no crossings.

I Exactly one of the two regions adjacent to any alternating
decomposition curve contains crossings.

I Form a plane graph G by taking the curves of the alternating
tangle decomposition to be the vertices of G and the edges of
G to be the non-alternating edges of D.

I Each split alternating component of D are assigned is an
isolated vertex.

I G is called the alternating decomposition graph of D.



Example 1

D

G



Example 2

D G



Construction of the Turaev surface F (D)

1. Replace crossings of D with disks.

2. Replace strands of D between crossings with (sometimes
twisted) bands.

3. Cap off the boundary components with disks to obtain F (D).



The Turaev surface - in pictures



An alternating example



An alternating example



An alternating example



An alternating example



A non-alternating example



A non-alternating example



A non-alternating example



A non-alternating example



The genus of a surface



Turaev genus

I Define gT (D) to be the genus of the Turaev surface F (D).

I The Turaev genus gT (L) of the link L is

gT (L) = min{gT (D) | D is a diagram of L}.

I gT (L) = 0 if and only if L is alternating.



History

I Turaev (1987) shows the genus of the Turaev surface has a
relationship to the span of the Jones polynomial:

c(L)− gT (L) ≥ span VL(t).

I DFKLS (2006) - Further connections between F (D) and the
Jones polynomial VL(t).

I Champanerkar, Kofman, and Stoltzfus (2007) - Khovanov
width gives lower bound for gT (L).

I L. (2008) - Knot Floer width gives lower bound for gT (L).

I Dasbach, L. (2011) - Further lower bounds for gT (L) coming
from σ, τ, and s.

I Dasbach, L. (2014) - A Turaev surface model for Khovanov
homology.



Alternating decomposition graph and Turaev genus

Theorem (Armond, L. - 2015)

The alternating decomposition graph of D determines gT (D).

Proof idea. The pieces of the Turaev surface inside of the
alternating regions are disks. The Turaev surface is obtained by
gluing these disks together with twisted bands, then capping off
boundary components.



Proof by picture
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Proof by picture



Classification goal

Goal: Classify link diagrams whose Turaev surface is a fixed
number using alternating decomposition graphs.



A genus preserving move



A genus preserving move



A general classification theorem

Theorem (Armond, L. - 2015)

For each non-negative integer n, there exists a finite set of graphs
G1, . . . ,Gk satisfying the following property. Every non-split link L
with gT (L) ≤ n has a diagram D with alternating decomposition
graph G such that G can be transformed into Gi by genus
preserving moves for some i = 1, . . . , k.



The Turaev genus one case

Theorem (Armond, L. - 2015, Kim - 2015)

Every link L with gT (L) ≤ 1 has a diagram as below, where each
Ri is an alternating tangle.
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The Turaev genus one case

In other words, every non-split, Turaev genus one link has a
diagram whose alternating decomposition graph can be reduced to
G via genus preserving moves.

G



The Turaev genus two case

Theorem (Armond, L. - 2015 and Kim - 2015)

Every link with gT (L) ≤ 2 has a diagram whose alternating
decomposition graph G can be transformed into one of the
following graphs through genus preserving moves.



Almost alternating links

I An almost alternating link is a non-alternating link with a
diagram where one crossing change transforms it into an
alternating diagram (Adams, Brock, Bugbee, Comar, Faigin,
Huston, Joseph, Pesikoff - 1992).

I Almost alternating links have Turaev genus one (Abe - 2008).

I Non-adequate links of Turaev genus one are almost
alternating (Kim - 2015).

I Every Turaev genus one link is mutant to an almost
alternating link (Armond, L. - 2015).



Mutation proof
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Mutation proof continued
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Link signature

I The signature σ(L) of a link was defined in various forms by
Trotter (1962), Murasugi (1965), Milnor (1968), and Erle
(1969).

I The signature of a link is the signature of the Seifert matrix
M of the link, that is the difference between the number of
positive and negative eigenvalues of M.

I The signature of a knot σ(K ) gives a lower bound on the
unknotting number u(K ) of K :

|σ(K )| ≤ 2u(K ).



A and B resolutions

A B

The A and B resolutions of a crossing.

I A choice of resolutions at each crossing is called a Kauffman
state.

I Let sA(D) and sB(D) be the number of components in the
all-A state and all-B state respectively.



Bounds on signature of links

+ −

I Let c+(D) and c−(D) be the number of positive and negative
crossings in D.

I (Traczyk - 2004) If D is an alternating diagram of the link L,
then

σ(L) = sA(D)− c+(D)− 1 = −sB(D) + c−(D) + 1.

I (Dasbach, L. - 2010) For any link L with diagram D, the
following inequality holds:

sA(D)− c+(D)− 1 ≤ σ(L) ≤ −sB(D) + c−(D) + 1.



The signature of Turaev genus one knots

The determinant det(K ) of a knot K is det(K ) = |∆K (−1)| where
∆K (t) is the Alexander polynomial of K .

Theorem (Dasbach, L. - 2015)

Let K be a knot with diagram D whose Turaev surface has genus
one. The signature of K is determined by

σ(K ) = sA(D)− c+(D)± 1 and σ(K ) ≡ det(K )− 1 mod 4.



Tangle closures

R R

N(R)

R

D(R)

The tangle R, its numerator closure N(R), and its denominator
closure D(R).



Signatures and alternating tangle decompositions
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Theorem (Dasbach, L. - 2015)

Let L be a link with Turaev genus one diagram as above. Then

σ(L) =

{
±1 +

∑2k
i=1 σ(N(Ri ))

±1 +
∑2k

i=1 σ(D(Ri )),

where the choice of numerator or denominator is determined by
the orientation of the link.



Open Questions

I Does our formula for the signature of Turaev genus one knots
allow us to compute unknotting numbers of any knots?

I Can we (approximately) express the signature of a link in
terms of the signatures of the closures of the tangles in its
alternating tangle decomposition?

I Is every link of Turaev genus one almost alternating?



Thank you!


