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Alternating knots

A knot diagram is alternating if the crossings alternate under, over,
under, over ... as one travels along the knot. A knot is called
alternating if it has an alternating diagram.



Properties of alternating knots

• An alternating diagram of K determines the crossing number
of K .

• From an alternating diagram, we can determine whether K is
prime.

• The complement of an alternating knot has a “nice”
geometric structure.

• Many knot invariants are “easy” for alternating knots.



Almost alternating knots

A knot diagram is almost alternating if it can be transformed into
an alternating diagram via one crossing change. A knot is called
almost alternating if it is non-alternating and has an almost
alternating diagram.



Examples of almost alternating knots

• All non-alternating knots with 10 or fewer crossings.

• All non-alternating knots with 11 crossings except possibly
two: 11n95 and 11n118.

• All non-alternating pretzel knots on arbitrarily many strands
(Kim, Lee).

• All Montesinos knots (Abe, Jong, Kishimoto).



Facts about almost alternating links

• Defined in 1992 by Colin Adams and seven undergraduate
students.

• The complement of an almost alternating knot has a “nice”
geometric structure.

• The Khovanov and knot Floer homologies of almost
alternating knots are relatively simple.



Strategies for finding almost alternating diagrams
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Another example: T3,4
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Another example: T3,4



Not almost alternating?

Question: How can we determine when a non-alternating knot is
not almost alternating?

One Answer: Use the Jones polynomial of the knot.



Kauffman state

0 1

Each crossing has an 0-resolution and a 1-resolution.

The collection of curves obtained by picking a resolution for each
crossing is a Kauffman state.



The trefoil



The all-0 state



The all-1 state



All of the Kauffman states



A polynomial to each state

A#(0)−#(1)δ#(circles)−1 where δ = −A2 − A−2



A polynomial to each state
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A polynomial to each state
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Add everything together
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A3δ + 3A + 3A−1δ + A−1δ2 = A−7 − A−3 − A5



The Kauffman bracket and the Jones polynomial

= A−7 − A−3 − A5

Jones polynomial J(K , t) = (−A)−3w 〈K 〉|A=t−1/4 .

In our example J(K , t) = t + t3 − t4.



The Jones polynomial of an almost alternating knot

Let J(K , t) = amtm + am+1tm+1 + · · ·+ an−1tn−1 + antn be the
Jones polynomial of K where am and an are nonzero.

Theorem (Dasbach, L.)

If K is almost alternating, then either |am| = 1 or |an| = 1 (or both
equal 1).



The knot 11n95

J(11n95, t) = 2t2 − 3t3 + 5t4 − 6t5 + 6t6 − 5t7 + 4t8 − 2t9.

Our theorem implies 11n95 is not almost alternating.



Thank you!


