
1

Hopper User Guide (Version 2023.09.02)
[Written/edited by Leah Isseroff Bendavid, based on and including excerpts from the PSC Bridges User

Guide (https://www.psc.edu/bridges/user-guide) and the Weizmann Institute Chemfarm User Guide

(http://www.weizmann.ac.il/chemistry/chemfarm/home).]

Contact Information

Asprey CCAS director: Joe Tanski, jtanski@vassar.edu

Hopper system administrator: David Frey, dfrey@vassar.edu

What is a computer cluster?
A computer cluster is a cluster of identical, commodity-grade computers networked into a small local

area network with installed libraries and programs, allowing the processing to be shared among them.

The result is a high-performance parallel computing cluster comprising inexpensive personal computer

hardware.

There are two factors that convert a collection of compute nodes into a cluster. One is shared storage

and the second is the workload manager. Shared storage allows any compute node to access the same

files and the same programs. Additionally, shared storage creates for the user an identical environment

on any compute node in a cluster. The workload manager allocates specific parts of hardware or other

resources to run a program. It ensures that every user will be allocated the requested resources without

disturbing other users. The user’s request for the resources and to run the program is identified by the

workload manager as a “job”. Since the cluster is a public resource and may have usage policies, all jobs

are organized in queues of different priority and with different amount of resources. The workload

manager sorts and runs jobs from different queues.

2

Connecting to Hopper
When you connect to Hopper, you are connecting to its login node or head node. The login node is used

for managing files, submitting batch jobs and launching interactive sessions. It is not intended for

production/research computing. Compute nodes are where your real work will be done. From a login

node, you can use the SLURM workload manager to connect to one or more compute nodes in an

interactive session or submit a batch script to be run on one or more compute nodes. You should not log

in to the compute nodes directly. Doing so would have a detrimental effect on the performance of

those compute nodes. See the Running Jobs section of this User Guide for information on production

computing on Hopper.

You need to use an SSH client from your local machine to connect to Hopper. SSH is client-server

software, which means that both the user's local computer and the remote computer must have it

installed. You must install SSH client software on your local machine. Free ssh clients for Macs, Windows

machines and many versions of Unix are available. Popular ssh clients (GUI) include PuTTY for Windows

and Cyberduck for Macs. A command line version of ssh is installed on Macs by default; if you prefer

that, you can use it in the Terminal application. Windows also offers a command line version of SSH via

the command window.

Using your ssh client, connect to hostname jr.vassar.edu using port 22. Enter your Hopper

username and password when prompted. To connect to Hopper using a command line version of ssh

(e.g., Terminal or Cygwin), you would use the command: ssh username@jr.vassar.edu where

“username” should be replaced by your own login name. Enter the password when prompted. You

cannot log in to Hopper from off-campus unless you are connected to Vassar’s VPN (Virtual Private

Network). Consult with Vassar’s CIS Department for help in accessing the VPN.

A Unix shell is a command-line interpreter that provides a traditional user interface for Unix and Unix -

like systems. Hopper is a Unix-like operating system, so you will be using a shell whenever you are

logged into Hopper or in batch scripts. The default shell on Hopper is bash, a Bourne -type shell. Other

shells are available for you if you prefer. For a practical introduction to using the Unix operating system

with a focus on Linux command line skills, consider reviewing the Practical Unix OpenClassroom or the

CodeAcademy course “Learn the Command Line”. A comprehensive introduction to Unix shell usage

and text editing is beyond the scope of this User guide, and the reader is directed to review other

resources.

3

System Configuration
Hopper contains seven computational nodes, of two different types. Each type of node has a different

number of sockets (a multi-core package), CPU cores per socket, and threads per core, resulting in a

different total number of CPUs per node. Additionally, the types of nodes differ in their available

Random Access Memory (RAM), or simply “memory”, which is where the data is located when a

program runs on a CPU or a collection of CPUs. The specifications for the computational nodes on

Hopper are provided in Table 1 below.

Table 1. Specifications of the Computational Nodes on Hopper

Node
type/brand

Node names Sockets
per node

CPU cores per
socket

Threads per
CPU core

Total CPUs
per node

RAM per
node

SuperMicro node1, node2 4 12 1 48 64 GB
Dell EMC node3, node5,

node6, node7,
node8

2 32 2 128 512 GB

When a user submits a job, this is interpreted as a request for computational resources. One may

request a specific number of CPUs/nodes/RAM in their job request. If the request for resources is

physically impossible to fulfill, the job will never start. Note that even though one may request a number

of CPUs for a job, the program running in that job will only use all of the CPUs if it is a parallelized

program (i.e., it uses Message Passing Interface – MPI, multithreading, or OpenMP). Also note that even

with parallelized programs, programs do not speed up linearly with increasing numbers of cores –

processes are often slowed down by memory access latency and communication overhead.

4

File Spaces
There are several distinct file spaces available on Hopper, each serving a different function.

Home ($HOME)
This is your Hopper home directory. It is the usual location for your batch scripts, source code and

parameter files; it should not be used as a workspace for running jobs. Its path is /home/username,

where username is your personal username. You can refer to your home directory with the environment

variable $HOME. Your home directory is visible to all of the Hopper nodes. Your home directory has an 8

GB quota (students) or 16 GB quota (faculty) and is backed up regularly. $HOME is not intended to be a

location for persistent storage of large amounts of data.

Work ($WORK)
This is your Hopper work directory, located at /work/username, where username is your personal

username. The work directory is for all I/O for running calculations and for more persistent storage of

data, although this directory is not backed up – you are responsible for backing up your data elsewhere.

Users have a quota of 16GB quota (students) or 1024 GB quota (faculty) of storage in the work directory.

To check your quota and your usage, run the check-my-quota script.

5

Transferring Files

scp
To use scp for a file transfer, you must specify a source and destination for your transfer. The format for

either source or destination is

username@machine-name:path/filename

To transfer a file from a local machine to Hopper, one would type the following in a command line

interface on the local machine (e.g., Terminal or Cygwin):

scp /path/to/myfile username@jr.vassar.edu:/path/to/file-destination

(Note that you can only do this if your local machine is on the Vassar network or connected to the

Vassar VPN.)

To transfer a file from Hopper to a local machine, one would type the following in a command line

interface on the local machine (e.g., Terminal or Cygwin):

scp username@jr.vassar.edu:/path/to/myfile /path/to/file-destination

Enter your password when prompted.

Graphical User Clients
You can also use a graphical user client to transfer files from Hopper to a local machine (and vice versa).

Some Windows options include WinSCP and FileZilla. CyberDuck can be use on Macs.

6

Programming Environment

C, C++, and Fortran
The Gnu compilers for C, C++, and Fortran are available on Hopper, and are loaded automatically. The

compilers are:

 C C++ Fortran

Gnu compiler gcc g++ gfortran

MPI Programming
Two types of MPI are supported on Hopper: MPICH and OpenMPI. There are two steps to compile an

MPI program:

1. Load the correct module for the MPI type you want to use, using the command

module load modulename, where the appropriate modulename is given in the table below.

[See Module Software for more information on modules.]

2. Issue the appropriate MPI wrapper command (provided in the table below) to compile your

program.

The two MPI types may perform differently on different problems or in different programming

environments. If you are having trouble with one type of MPI, please try using another type.

MPI Type Module name
C wrapper
command

C++ wrapper
command

Fortran wrapper
command

OpenMPI openmpi-3.1
mpicc mpicxx mpifort

MPICH mpich-3.3

7

Running jobs
All production computing must be done on Hopper’s compute nodes, NOT on Hopper's login nodes. The

SLURM scheduler (Simple Linux Utility for Resource Management) manages and allocates all of Hopper's

compute nodes. Several partitions, or job queues, have been set up in SLURM to allocate resources

efficiently.

To run a job on Hopper, you need to decide how you want to run: interactively or in batch; and where to

run - that is, which partitions you are allowed to use.

What are the different ways to run a job?
You can run jobs on Hopper in several ways:

Batch mode - where you first create a batch (or job) script which contains the commands to be run, then

submit the job to be run as soon as resources are available

Interactive mode - where you type commands and receive output back to your screen as the commands

complete

Regardless of which way you choose to run your jobs, you will always need to choose a partition to run

them in.

Which partitions can I use?
Different partitions control different types of Hopper’s resources; they are configured by the type of

node they control along with other job requirements like how many nodes or how much time or

memory is needed. For more information, see Hopper Partitions.

Batch Jobs
To run a batch job, you must first create a batch (or job) script, and then submit the script using the

sbatch command. A batch script is a file that consists of SBATCH directives, executable commands, and

comments.

SBATCH directives specify your resource requests and other job options in your batch script. You can

also specify resource requests and options on the sbatch command line. Any options on the command

line take precedence over those given in the batch script. The SBATCH directives must start with

"#SBATCH" as the first text on a line, with no leading spaces. Comments begin with a '#' character.

The first line of any batch script must indicate the shell to use for your batch job.

Sample Batch Scr ipts

A sample script for an MPI job is provided below.

Note that:

• The script uses the bash shell, indicated by the first line "#!/bin/bash". If you use a different

shell some Unix commands will be different.

• For username, jobname, myprogram, and path-to-work-directory, you must substitute your

appropriate names, programs, and paths.

• Request the resources that are appropriate for your calculation. This includes reasonable

numbers of nodes and cores, as well as the estimated run time. More than one node should

8

only be requested in instances where there are not enough cores on one node alone. If your

code is not parallelized, do not request more that one core (there is no computational

advantage to requesting more than one core.

#!/bin/bash

#SBATCH -J jobname # job name
#SBATCH -o jobname.out # output and error file name
#SBATCH --nodes=1 # total number of nodes to run job on
#SBATCH --ntasks-per-node=48 # number of CPUs per node to run job on
#SBATCH -p general # queue (partition) – general, emc
#SBATCH -t 01:30:00 # run time (hh:mm:ss) - 1.5 hours
#SBATCH --mail-user=username@vassar.edu
#SBATCH --mail-type=begin # email me when the job starts
#SBATCH --mail-type=end # email me when the job finishes

#commands to execute the job appear below the header

module load mpich-3.3

cd /home/username/path-to-work-directory

srun --mpi=pmi2 -n $totalcpus /home/username/bin/myprogram

A sample script for a single core job might look something like the example given below:

#!/bin/bash

#SBATCH -J jobname # job name

#SBATCH -o jobname.out # output and error file name

#SBATCH --nodes=1 # total number of nodes to run job on

#SBATCH --ntasks-per-node=1 # number of CPUs per node to run job on

#SBATCH -p general # queue (partition) – general, emc

#SBATCH -t 01:30:00 # run time (hh:mm:ss) - 1.5 hours

#SBATCH --mail-user=username@vassar.edu

#SBATCH --mail-type=begin # email me when the job starts

#SBATCH --mail-type=end # email me when the job finishes

#commands to execute the job appear below the header

cd /home/username/path-to-work-directory

/home/username/bin/myprogram

To submit a batch job, use the sbatch command. The format is

sbatch -options batch-script

The options to sbatch can either be in the header of your batch script or on the sbatch command line.

Options in the command line override those in the batch script.

9

Some basic options to the sbatch command

Option Description Default
-p partition Partition requested general
-t HH:MM:SS Walltime requested in HH:MM:SS infinite
-N n Number of nodes requested. 1
--mem=nGB

Note the "--" for this
option

Memory in GB. None

--ntasks-per-

node=n

Note the "--" for this
option

Request n cores be allocated per node. 1

--mail-type=type

Note the "--" for this
option

Send email when job events occur, where type can be BEGIN, END,
FAIL or ALL.

None

--mail-user=user

Note the "--" for this
option

User to send email to as specified by -mail-type. Default is the user
who submits the job.

None

-h Help, lists all the available command options

Interactive Sessions
The srun command can be used to request nodes for interactive use. If you use the syntax:

srun -N 2 --ntasks-per-node=8 --pty bash

this requests 2 nodes (-N 2) with 8 tasks per node (--ntasks-per-node=8), and it launches a bash shell on

the compute nodes. The option --pty is necessary to start a session that looks like a normal interactive

session but is on one of the compute nodes.

Note: you can add any "normal" options to the srun line, like -p for partition or -t for runtime.

After you enter the srun command you will be put into the queue waiting for nodes to become

available. When they do you will get an interactive session on a compute node, which will start in the

directory from which you launched the session. You can then run any programs/computations

interactively. Note: the compute nodes may have a different environment or commands available in

comparison with the head node. The environment you get on compute node is determined by a

combination of three things:

• The environment as set in your session from which you launched the srun command.

• Extra variables set by Slurm

• Settings from your .bashrc file

Hopper Partitions
There are two partitions available for use.

General
Jobs in the general partition run on node1, node2, and node3. This is the default partition. There are

currently no queue limits for this partition, although nodes/cores requested cannot exceed those

available in the partition.

10

EMC

Jobs in the emc partition run on node5, node6, node7, node8. Usage of the emc partition is

reserved/prioritized for the Bendavid Research Group. There are currently no queue limits for this

partition, although nodes/cores requested cannot exceed those available in the partition.

11

Node, partition, and job status information

sinfo
The sinfo command displays information about the state of Hopper’s nodes. The nodes can have

several states:

alloc Allocated to a job

down Down
drain Not available for scheduling

idle Free

resv Reserved
See also: sinfo man page

squeue
The squeue command displays information about the jobs in the partitions. Some useful options are:

-j jobid Displays the information for the specified jobid

-u username Restricts information to jobs belonging to the specified username

-p partition Restricts information to the specified partition
-l (long) Displays information including: time requested, time used, number of requested

nodes, the nodes on which a job is running, job state and the reason why a job is
waiting to run.

See also: squeue man page for a discussion of the codes for job state, for why a job is waiting to run,

and more options.

scancel
The scancel command is used to kill a job in a partition, whether it is running or still waiting to run.

Specify the jobid for the job you want to kill. For example,

scancel 12345

kills job # 12345.

See also: scancel man page

sacct
The sacct command can be used to display detailed information about jobs. It is especially useful in

investigating why one of your jobs failed. The general format of the command is

sacct -X -j nnnnnn -S MMDDYY --format parameter1,parameter2, ...

For 'nnnnnn' substitute the jobid of the job you are investigating. The date given for the -S option is the

date at which sacct begins searching for information about your job. The commas between the

parameters in the --format option cannot be followed by spaces. The --format option determines what

information to display about a job. Useful parameters are:

JobID
Partition

12

Account - the account charged
ExitCode - useful in determining why a job failed
State - useful in determining why a job failed
Start, End, Elapsed - start, end and elapsed time of the job
NodeList - list of nodes used in the job
NNodes - how many nodes the job was allocated
MaxRSS - how much memory the job used
AllocCPUs - how many cores the job was allocated

See also: sacct man page

Monitoring memory usage
It can be useful to find the memory usage of your jobs. For example, you may want to find out if

memory usage was a reason a job failed. You can determine a job's memory usage whether it is still

running or has finished. To determine if your job is still running, use the squeue command.

squeue -j nnnnnn -O state

where nnnnnn is the jobid.

For running jobs: srun and top or sstat
You can use the srun and top commands to determine the amount of memory being used.

srun --jobid=nnnnnn top -b -n 1 | grep userid

For nnnnnn substitute the jobid of your job. For 'userid' substitute your userid. The RES field in the

output from top shows the actual amount of memory used by a process. The top man page can be

used to identify the fields in the output of the top command.

See the man pages for srun and top for more information.

You can also use the sstat command to determine the amount of memory being used in a running job

sstat -j nnnnnn.batch --format=JobID,MaxRss

where nnnnnn is your jobid.

See the man page for sstat for more information.

For jobs that are finished: sacct or job_info

If you are checking within a day or two after your job has finished you can issue the command

sacct -j nnnnnn --format=JobID,MaxRss

If this command no longer shows a value for MaxRss, use the job_info command

job_info nnnnnn | grep max_rss

Substitute your jobid for nnnnnn in both of these commands.

See the man page for sacct for more information.

See also: documentation for SLURM, including man pages for all the SLURM commands

13

14

Module Software
The Module package provides for the dynamic modification of a user's environment via module files.

Module files manage necessary changes to the environment, such as adding to the default path or

defining environment variables, so that you do not have to manage those definitions and paths

manually.

Modules are also used to manage multiple versions of applications, tools, and libraries, and where name

conflicts between multiple packages would cause problems. Type module available to see a

complete list of the modules available on the system.

Basic use
To see what modules are available for a software package, type

module avail package-name

To set up the environment for a software package, load that environment with the module load

command.

module load package-name

Module commands
Some useful module commands are:

module avail lists all the available modules

module avail foo lists all the available modules for package foo

module help foo displays help on module foo

module display
foo

indicates what changes would be made to the environment by loading module
foo without actually loading it

module load foo loads module foo

module list displays your currently loaded modules

module swap foo1
foo2

switches loaded module foo1 with module foo2

module unload
foo

reverses all changes to the environment made by previously loading module foo

